Ogromny rozwój sieci telefonii komórkowej przyczynił się do wzrostu zainteresowania opinii publicznej tematem wpływu fal radiowych na zdrowie człowieka. Stosunkowo często można spotkać się z wszelkimi badaniami w tym temacie zarówno w prasie, w Internecie jak i w telewizji. Oszacowanie wpływu fal radiowych na organizm człowieka jest jednak zagadnieniem skomplikowanym.

Fala radiowa jest to szczególny przypadek promieniowania elektromagnetycznego. Pod falą radiową jest również pojęcie fal świetlnych, ultrafioletu, podczerwieni oraz promieniowania jonizującego. Promieniowanie jonizujące ma częstotliwości znacznie wyższe od promieniowania świetlnego co widać na poniższym rysunku.

Oddziaływanie promieniowania elektromagnetycznego na organizm człowieka można podzielić na kategorie zobrazowane na poniższym zdjęciu.

Jednym z największych zagrożeń jakie niesie ze sobą promieniowanie elektromagnetyczne jest jonizacja cząstek wewnątrz komórek organizmu człowieka. Proces jonizacji polega na tym, że wiązania molekularne wewnątrz komórek są rozrywane. Rozerwanie wiązań powoduje powstanie cząstek, które są naładowane zarówno dodatnio jak i ujemnie. Zjawisko to jednak dotyczy tylko i wyłącznie promieniowania bardzo wysokich częstotliwości. Jednym z przykładów promieniowania o bardzo wysokiej częstotliwości jest promieniowanie używane przy wykonywaniu prześwietleń, jest ono znacznie powyżej zakresu światła widzialnego.

Promieniowanie radiowe NIE jest promieniowaniem jonizującym. Promieniowanie to niesie ze sobą energię, która jest setki razy mniejsza niż ta, która byłaby potrzebna do rozerwania wiązań międzycząsteczkowych.

źródło: gsm.edu.pl

Podstawową funkcja transmisyjną realizowaną przez aparat telefoniczny jest generowanie prawidłowego sygnału na częstotliwości i komunikacja pomiędzy aparatem i bazą. Ponieważ liczba urządzeń mających dostęp do sieci telefonicznej jest ogromna, aparaty telefoniczne mają bardzo staranny nadzór nad parametrami elektrycznymi sygnału urządzenia. Do najważniejszych parametrów urządzeń należą:

  • Moc nadajnika – w systemie GSM zastosowano mechanizm sterowania mocą. Stacja bazowa wysyła polecenie z regulacją mocy, by ta nie była ani za mocna, ani za słaba. Zależy to od odległości telefonu od stacji bazowej. Efektem ubocznym regulacji mocy jest niepożądane promieniowanie w sąsiednich kanałach radiowych. Standard GSM definiuje parametry czasowe włączenia i wyłączenia stacji ruchomej.
  • Niepożądana emisja poza pasmem – definiuje ograniczenia na moc sygnałów niepożądanych o częstotliwościach leżących poza pasmem GSM. Ograniczenia są stworzone by uniknąć interferencji z innym sprzętem elektronicznym. Stabilność częstotliwości – stacja bazowa dostraja urządzenie przenośne do odpowiedniej częstotliwości.
  • Dokładność modulacji – zastosowano modulację GMSK. Pozwala to na stosowanie w stacjach wydajnych nieliniowych wzmacniaczy.
    Pobór mocy – telefony są zoptymalizowane do działania jak najdłużej, przy odpowiedniej minimalizacji akumulatorów.

Podstawowym wymogiem jaki jest stawiany projektantom systemów GSM jest to, aby informacje o położeniu danego abonenta nie były dostępne dla osób nieuprawnionych. Chroniona również musi być tożsamość abonenta realizującego położenie(poprzez tożsamość rozumie się numer identyfikacyjny IMSI).

W kanale radiowym proces szyfrowania transmisji jest procesem o wysokim poziomie poufności, jednak rozpoczyna się on dopiero w chwili kiedy system ustali tożsamość abonenta, z którym nawiązano połączenie. Przykładowo – informacje które są przesyłane w kanałach rozsiewczych na częstotliwości odniesienia nie są szyfrowane. Informacje te są odbierane w tej samej chwili przez wszystkie ruchome stacje, które znajdują się w jednej komórce. W tych informacjach jest również wiadomość, która zawiera międzynarodowy numer abonenta ruchomego IMSI. Gdyby zdarzyło się, że ktoś podsłuchuję tą nieszyfrowaną transmisję w kanale radiowym, mamy pewność, że dana osoba może stwierdzić gdzie aktualnie znajduje się dany abonent.

Tymczasowy numer abonenta ruchomego TMSI jest rozwiązaniem tego problemu. Jest to tymczasowy numer abonenta ruchomego, który ma za Zasanie zastępowanie numeru IMSI tam, gdzie jest konieczność wysyłania numer IMSI w kanał radiowy w niezaszyfrowanej postaci. Numer TMSI uzgadniany jest z systemem w trakcie procedur sygnalizacyjnych, które odbywają się w chronionym trybie. Stacja ruchoma po tymże uzgodnieniu komunikuje się z systemem używając tylko i wyłącznie numeru TMSI. Numer ten jest przydzielany dla danego obszaru przywołań i w tej samej chwili określa abonenta tylko jeśli podawany jest wspólnie z numerem obszaru przywołań. Przydział i zwalnianie numerów TMSI jest zadaniem centrali MSC. Numer przydzielany jest podczas pierwszego zgłoszenia się stacji ruchomej w danym obszarze przywołań, natomiast zwalniany jest w chwili gdy stacja ruchoma opuszcza dany obszar.

Informacje systemowe, które po odczytaniu mogłyby być naruszeniem prywatności abonenta są dodatkowo zabezpieczane. Odbywa się to w ten sam sposób oraz w tych samych układach co szyfrowanie sygnałów rozmownych lub sygnałów danych.

źródło: gsm.edu.pl

Elektroniczny podpis opiera się na stworzeniu procedury, której zadaniem jest przesłanie drogą elektroniczną danych, które umożliwiają identyfikację abonenta A, a jednocześnie uniemożliwiają powtórzenie tej procedury przez osobę B. Osoba B obserwuje w tym wypadku proces identyfikacji abonenta A. Procedura odbywa się również w przypadku gdy w kanale niekodowanym czyli takim, który bezproblemowo może być obserwowany przez inne osoby, trzeba przesłać szyfrujące klucze. Klucze te są dla danego abonenta charakterystyczne i muszą być zabezpieczone przed ewentualnym wykorzystaniem ich w przyszłości przez osobę do tego nieupoważnioną.

Zasada tworzenia elektronicznego podpisu jest na poniższym zdjęciu:

Załóżmy, że dany kanał transmisyjny nie jest chroniony. W tym wypadku inni abonenci mogą obserwować identyfikację abonenta A dzięki działaniu centrum identyfikacji. Klucz który jest podstawą do identyfikacji abonenta A to tzw. Klucz Ka (rys.a). Klucz Ka jest to hasło, które jest ciągiem znaków, co w istocie jest równoważone liczbie. Gdy klucz Ka jest niezakodowany, to podczas przesyłania umożliwiane jest innemu abonentowi skopiowanie tego klucza. Można wtedy użyć ten klucz w innej sytuacji. Użycie tego klucza w innej sytuacji sprawiłoby, że w przyszłości abonent B zostanie uznany jako abonent A, dzięki czemu abonent B będzie miał dostęp do zasobów abonenta A.

Na rysunku (b) przedstawiono sytuację w której centrum identyfikacji przesyła abonentowi A liczbę y. Abonent ten posiadając tajny klucz Ka, generuje liczbę a, która jest elektronicznym podpisem abonenta A odpowiadającym liczbie y. Gdyby abonent B skopiował liczbę a, to nie otrzyma w przyszłości dostępu do zasobów abonenta A. Spowodowane jest to faktem, że podczas następnej procedury identyfikacji, przez centrum identyfikacji zostanie przesłane do abonenta A inna liczba y1. Liczba ta będzie wymagać odesłania do centrum identyfikacji innej liczby a1.

Podsumowując zasada tworzenia elektronicznego podpisu polega głównie na stworzeniu i zdefiniowaniu algorytmu. Algorytm ten ma za zadanie na podstawie liczb y1 i Ka obliczyć liczbę a1, która odpowiada liczbie y1 (rys. c). Aby procedura działała bezawaryjnie, konieczne jest to, aby obserwator B nie był w stanie obliczyć tajnego klucza Ka. (rys.d)

Dlaczego i kiedy stosuje się komórki sektorowe?

Komórki sektorowe są stosowane zamiast komórek dookólnych w celu polepszenia jakości sygnału na obszarach gęściej zaludnionych np. w miastach. Jest to popularny sposób, który wykorzystują operatorzy aby zwiększyć pojemność systemu. W ten sposób zmniejsza się obszar obsługiwany przez daną komórkę, a jednocześnie maksymalna odległość stacji bazowej od ruchomej nie ulega zmianie.

Innym sposobem uzyskania lepszej jakości sygnału na gęsto zaludnionych sygnałach jest dzielenie ich na mniejsze komórki. Porównując te dwa sposoby, za pomocą komórek sektorowych można uzyskać dobre efekty przy mniejszej liczbie masztów antenowych. To zmniejsza koszty infrastruktury. Jest to najczęściej stosowane rozwiązanie przez operatorów komórkowych na obszarach miejskich. Na obszarach wiejskich stosowane są komórki dookólne ponieważ przez niską gęstość obsługiwanego ruchu nie potrzebne są dodatkowe rozwiązania.

Sektoryzowanie komórek dookólnych jest bardzo użyteczne i stosuje się je często ponieważ dzięki tej technice można zwiększyć pojemność sieci bez zwiększania ilości stacji bazowych.

 

anteny dookólne

anteny dookólne

Budowa komórki sektorowej

Komórka sektorowa składa się z kilku anten kierunkowych. Zastępują one pojedynczą antenę dookólną. Najczęściej stosuje się komórki trzysektorowe z których każdy z sektorów promieniuje energię tylko w określonym kierunku o koncie rozwarcia równym 120 stopni. Czasami stosuje się również komórki sześciosektorowe z kontem rozwarcia 60 stopni. Zdarza się, żę wzdłuż ruchliwych dróg stosuje się komórki dwusektorowe, które wysyłają sygnał wzdłuż drogi w obu kierunkach.

 

Poniżej widać masz komórki trzysektorowej. Na maszcie znajduje się 6 kierunkowych anten skierowanych w 3 kierunkach. Dzięki temu, że w 1 kierunku umieszczone są po 2 anteny, po przesłaniu sygnału można wybrać sygnał lepszej jakości, w ten sposób zwiększając niezawodność transmisji. Widać tam również antenę kierunkową linii radiowej która doprowadza sygnał do stacji bazowej z centrali GSM.

stacja bazowa - komórka sektorowa

stacja bazowa